
Creating Connections

Science Complex Addition and Renovation Butler University

Creating Connections

The Science Complex Addition and Renovation project at Butler University is all about connections. At the most literal level, the Levinson Family Hall addition connects two 70s-era buildings – Gallahue Hall and Holcomb Building – without erasing their distinctive international style. But it also calls for gathering dispersed departments and programs under one roof, marrying historically significant science programs with modern lab and classroom facilities, and creating spaces where students and faculty can collaborate both formally and informally.

Most important, perhaps, the building will connect today's students, faculty and researchers to discoveries that shape the way we will live tomorrow.

Butler University Levinson Family Hall at a Glance

As academic trends and teaching methods evolve, Butler University envisions the Science Complex Addition and Renovation project as an opportunity to create spaces that support current and future needs through interdisciplinary and collaborative learning and research.

KEY FEATURES

- Connection between two existing buildings for a unified science complex
- 12 active-learning classrooms ranging from 24 to 100 students
- Teaching and research laboratories
- Science library
- Common spaces for collaboration and study
- New glass-enclosed atrium
- Programs served include: biology, chemistry, molecular science, psychology, physics, astronomy, neurosciences, engineering
- International-style modern character to be maintained and enhanced

Pulling the Pieces Together

When Butler University first began to plan for additional space for its science departments, a survey of the site suggested creating a connection between the buildings. As BSA LifeStructures began work to clarify the building connections, a few challenges presented themselves, stay clear of the steep north hillside/canal basin; and right-size the project. This would result in a contiguous learning space that takes advantage of the existing buildings' complementary international-style facades and the fact that the buildings' floor and ceiling heights align. The solution is a unifying atrium and an interior design that makes the transition from one building to the other virtually seamless. This design had the added benefit of yielding open common spaces that can host collaborations and conversations, both formal and informal. One area of the atrium even features stairstepped platforms that can be used for causal seating or for arena-style presentations.

This connecting-atrium solution also underscored the primary purposes of the building: to bring together science departments that had been scattered across campus in the wake of rapid program growth, and to give those departments cutting-edge facilities.

To manage flow in a building that will serve science majors as well as students taking basic science courses, the design provides learning spaces for the broader population on lower floors and those for science majors on upper floors.

Up-to-Date Learning and Discovery

Before renovation, Gallahue Hall and Holcomb Building offered a well-preserved snapshot of 1970s classroom and lab design: Confined spaces dedicated to specific uses. Unfortunately, that glimpse of history does little to attract and retain the best researchers and students.

To create a more welcoming space, BSA's team designed open and bright modular labs that permit greater flexibility in order to adapt to future research needs. Designs allow laboratory spaces to expand and contract as required, and to accommodate both highly specialized and broad research. Classrooms were designed around active learning, technology and, again, flexibility, and they were positioned to allow greater connection and collaboration among students and faculty. Overall, science class lab space was increased by 52 percent.

See and Be Seen

Butler wants to show off the work its students and faculty do, and to put on display its ongoing process of learning and discovery. The challenge: making everything visible without inhibiting work or raising security concerns.

BSA's designers solved the problem by working with researchers to find a comfortable mix of glass panels and opaque walls and to also identify those areas where visibility is most appropriate. They even went so far as to sketch out a "tour route" that would showcase the building's activities without creating discomforts. As an added benefit, the use of glass and open spaces will allow sunlight to penetrate deeper into the spaces than ever before.

The Library of Today

At the heart of Holcomb Building sat Butler's science library, a popular two-story space connected by a concrete staircase. While it was beloved, it is also functioned, as a book-focused facility. Only between 2 and 5 percent of its collections had been checked out in the past 10 years.

Additionally, the original library had narrow windows located above the library book stacks allowing no views in or out of the original space. The space had a skylight that allowed light in, but also allowed water in during heavy rains which was detrimental to book storage.

To bring the library into the 21st century, the re-design dedicated less space to volumes and more to spaces that support today's study habits. The re-envisioned library offers students and faculty spaces for individual and collaborative study and also yields additional room for active and traditional teaching. Flexible spaces allow some areas to be closed off for small-group co-work.

Making the Building Work


In addition to housing lab and classroom spaces, Holcomb Hall also serves as Butler's temporary shipping and receiving site. The current design accommodates that role for the time being, allowing for – and even improving – shipping/receiving access in a more aesthetically pleasing way. However, the master plan calls for this function to be located elsewhere on campus in the future, thus allowing the sciences to continue to grow within the space.

The Levinson Family Hall also had to embrace the campus' shifting attitudes about trash collection: The University is making a concerted effort to reduce the resources committed to trash collection. To support that objective, the design includes centralized trash chutes, which means fewer employees are needed for trash collection. The design also puts an emphasis on meeting current energy codes, despite the fact that the original buildings were built before many of today's codes were even imagined. These and other measures resulted in a building that is

expected to achieve LEED Silver certification.

In addition, the design needed to incorporate updated fume hoods in ways that would complement the building's overall appearance and function. Careful planning and placement of labs supported this effort, for example, by placing chemistry labs on the third floor to allow for proper exhausting with the least construction and operational difficulty.

In these and other ways, BSA's designers applied both practical expertise and innovative problem-solving to the basic operations of the Butler University Science Complex Addition and Renovation project, ensuring that the buildings function smoothly in its most mundane requirements while its inhabitants have a space where they can pursue fantastic and world-changing discoveries.

CLIENT

Butler University

LOCATION

Indianapolis, Indiana

SIZE

Gallahue Hall: 121,000 square feet (renovated) Holcomb Building: 84,000 square feet (renovated) Levinson Family Hall: 60,000 square feet (new)

COST

\$84.7 Million

DATE COMPLETED

Phase 1: August 2021 Phase 2: August 2022

SERVICES

Architecture Interiors Planning Lab Planning

CIRCULATION/PUBLIC

CLASSROOM LAB

CLASSROOM LAB SUPPORT

RESEARCH SPACE

OFFICE

OFFICE SERVICE

COLLABORATION

OTHER

RESEARCH SPACE SERVICE

VIVARIUM

BSA LifeStructures is an integrated design firm creating inspired solutions that improve lives through architecture, engineering, interior design, and planning services. With national expertise and regional leadership, BSA designs LifeStructures – innovative and inviting spaces that not only house the activities of healing, learning, and discovery but actually contribute to them – in order to make a difference for our clients and communities. As such, a LifeStructure is purposeful, a LifeStructure inspires, a LifeStructure delights and a LifeStructure improves lives.

bsalifestructures.com 800.565.4855